- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001001000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Sim, Alexander (2)
-
Wu, Kesheng (2)
-
Zou, Jia (2)
-
Cao, Lei (1)
-
Chowdhury, Kanchan (1)
-
Eichenberger, Alexandre (1)
-
Guan, Hong (1)
-
Li, Xuanmao (1)
-
Lin, Qi (1)
-
Masood, Saif (1)
-
Min, Hong (1)
-
Sharma, Ankita (1)
-
Sun, Guoxin (1)
-
Wang, Jie (1)
-
Wang, Lanjun (1)
-
Wang, Yida (1)
-
Wu, Teresa (1)
-
Yuan, Binhang (1)
-
Zhang, Liang (1)
-
Zhou, Lixi (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Serving deep learning (DL) models on relational data has become a critical requirement across diverse commercial and scientific domains, sparking growing interest recently. In this visionary paper, we embark on a comprehensive exploration of representative architectures to address the requirement. We highlight three pivotal paradigms: The state-of-the-art \textit{DL-centric} architecture offloads DL computations to dedicated DL frameworks. The potential \textit{UDF-centric} architecture encapsulates one or more tensor computations into User Defined Functions (UDFs) within the relational database management system (RDBMS). The potential \textit{relation-centric} architecture aims to represent a large-scale tensor computation through relational operators. While each of these architectures demonstrates promise in specific use scenarios, we identify urgent requirements for seamless integration of these architectures and the middle ground in-between these architectures. We delve into the gaps that impede the integration and explore innovative strategies to close them. We present a pathway to establish a novel RDBMS for enabling a broad class of data-intensive DL inference applications.more » « less
-
Sharma, Ankita; Li, Xuanmao; Guan, Hong; Sun, Guoxin; Zhang, Liang; Wang, Lanjun; Wu, Kesheng; Cao, Lei; Zhu, Erkang; Sim, Alexander; et al (, Proceedings of 2023 IEEE International Conference on Big Data (IEEE BigData 2023))Existing approaches to automatic data transformation are insufficient to meet the requirements in many real-world scenarios, such as the building sector. First, there is no convenient interface for domain experts to provide domain knowledge easily. Second, they require significant training data collection overheads. Third, the accuracy suffers from complicated schema changes. To address these shortcomings, we present a novel approach that leverages the unique capabilities of large language models (LLMs) in coding, complex reasoning, and zero-shot learning to generate SQL code that transforms the source datasets into the target datasets. We demonstrate the viability of this approach by designing an LLM-based framework, termed SQLMorpher, which comprises a prompt generator that integrates the initial prompt with optional domain knowledge and historical patterns in external databases. It also implements an iterative prompt optimization mechanism that automatically improves the prompt based on flaw detection. The key contributions of this work include (1) pioneering an end-to-end LLM-based solution for data transformation, (2) developing a benchmark dataset of 105 real-world building energy data transformation problems, and (3) conducting an extensive empirical evaluation where our approach achieved 96% accuracy in all 105 problems. SQLMorpher demonstrates the effectiveness of utilizing LLMs in complex, domain-specific challenges, highlighting the potential of their potential to drive sustainable solutions.more » « less
An official website of the United States government
